
RTOS Innovators

Sales: (800) 366-2491 Email: sales@smxrtos.com Web: www.smxrtos.com Voice: (714) 437-7333 Fax: (714) 432-0490

1

Ways to Use USB in Embedded Systems
by Yingbo Hu, R&D Embedded Software Engineer

and Ralph Moore, President of Micro Digital

Universal Serial Bus (USB) is a connectivity specification that provides ease of use,
expandability, and good performance for the end user. It is one of the most successful
interconnects in computer history. Originally released in 1995 for PCs, it now is expanding
into use by embedded systems and is replacing older interfaces such as serial and parallel
interfaces as the preferred communication link. This article has been written as a tutorial on
the many ways that USB can be employed in embedded systems.

Introduction
USB is not a peer-to-peer protocol like Ethernet. One USB device, called the USB host, acts
as the master. Other USB devices, called USB devices or USB peripherals, act as slaves. The
host initiates all bus transfers. Up to 127 USB devices can be connected to one USB host via
up to 6 layers of cascaded hubs. For embedded systems, it is very unusual to have more than
one hub. In most cases, one USB device connects directly to one USB host with no hub.

A USB host requires a USB host controller and USB host software. The latter is layered from
the bottom up as follows: (1) USB host controller driver, (2) USB host stack, and (3) USB
class driver. The first layer controls the USB host controller – i.e. it reads and writes registers
in the controller and it transfers data. The second layer implements the USB protocol and thus
controls connected USB devices. The third layer is device-aware and communicates with and
controls the actual device (e.g. disk drive, HID human interface device, CDC communication
device, etc.) One USB host stack can support multiple class drivers, simultaneously. In an
embedded system there usually is only one USB host controller.

A USB device requires a USB device controller and USB device software. The latter is
layered from the bottom up as follows: (1) USB device controller driver, (2) USB device
stack, and (3) USB function driver. The first layer controls the USB device controller – i.e. it
reads and writes registers in the controller and it transfers data. The second layer implements
the USB protocol and thus communicates with the USB host stack. The third layer
communicates with the class driver in the host and provides the actual device control. It
makes the embedded unit look like a USB disk drive, HID, serial device, etc. One USB
device stack can support more than one function driver simultaneously, through the
composite device framework.

A nice feature of USB is it is plug and play, which means that a USB device will be
automatically recognized shortly after being connected to a host. Also, cabling is simple:
There is an A receptacle/plug pair for the host end and a B receptacle/plug pair for the device
end. All hosts and devices adhere to this standard, except On The Go (OTG) devices, which
are designed for but not widely used yet in embedded systems.

2

Example Configurations
Following are examples of how USB can be utilized in the embedded system, for both host
and device. Where performance information is given, a “medium performance processor” is
assumed to be a 50-80 MHz ARM7 or ColdFire.

Figure 1: PC to Device via USB Serial

Most new PCs and laptops do not provide serial or parallel ports; they have been replaced
with USB ports. Hence, connecting a PC to embedded device via its RS232 port is no longer
possible. As part of their USB host stacks, popular PC operating systems (Windows, Mac OS,
and Linux) include Communication Class Drivers (CDC). As shown in Figure 1, if the
embedded device has a Serial/CDC Function Driver then it will look like a serial device to
the PC. When it is plugged in, it will be recognized by the PC OS as a serial device, and it
will be automatically assigned a COM port number. Then, terminal emulators and other serial
applications can communicate with the embedded device without any modification! Hence,
we are back to where we started, which, in this case, is a good thing. This use of USB is
particularly good for control and transferring serial data. Transfer rates of 800 KB/sec are
feasible at full speed and 2500 KB/sec at high speed for medium speed embedded processors.

USB Cable

Hardware

PC Application

USB Host Stack

USB Host

Controller

USB Device

Controller

USB Device

USB Serial/CDC

Function Driver

Serial Port API

Embedded

Application

Software

PC Embedded Device

USB CDC Class

USB Host

Controller Driver

USB Device

Controller Driver

3

Figure 2: PC to Device via USB Disk

Another method to connect a PC or laptop to an embedded device is for the embedded device
to emulate a USB disk drive. Popular PC operating systems have built-in USB mass storage
class drivers that interface their file systems to the USB host stack, as shown on the left side
of Figure 2. Adding a mass storage function driver to the embedded device enables it to look
like a USB disk drive to the PC. Also shown, as an example, is how a resident flash memory
can be accessed as a flash disk via the USB function driver connected to its flash driver. Any
other type of storage media could be connected, instead, via its own driver.

When the embedded device is plugged into a PC, it is recognized as a disk drive and
automatically assigned a drive letter. Thereafter, files can be dragged and dropped to and
from the embedded device as though it were a disk drive. In this example, a PC application
could read and write the files on the flash disk. Note that the embedded application uses a
local file system, as shown in Figure 2, to access the flash disk, itself. This file system must,
of course, be Windows-compatible. An important concept to understand is that within the PC,
the PC’s file system is used and the embedded device merely looks like another disk drive to
it. This use of USB would be particularly good for uploading acquired data files or
downloading new versions of code files.

USB Cable

Hardware

PC Application

PC USB Host

Stack

USB Host

Controller

USB Device

Controller

Embedded USB

Device Stack

USB Mass

Storage Function

Driver

Mass Storage

Class Driver

Embedded

Application

Software

PC Embedded Device

Flash Memory

Flash Driver

File System

USB Host

Controller Driver

USB Device

Controller Driver

Flash I/O

Driver

File System

4

Figure 3: Web Server Access via USB RNDIS

RNDIS (Remote Network Driver Interface Specification) permits emulating Ethernet over
USB. It is not part of the USB specification, but some popular PC operating systems, such as
Windows and Linux, support it. As shown in Figure 3, adding an RNDIS function driver to an
embedded device allows interfacing its USB device stack to its TCP/IP stack that, in turn,
connects to its web server. When the embedded device is plugged into a PC, its browser can
connect to the web server in the embedded device. Hence, it is possible to use a browser to
access an embedded device’s web server, even when there is no Ethernet connection or it is
difficult to access. This can be convenient for field troubleshooting or configuration using a
laptop. The same information accessed via the network to which the embedded device is
connected, can be accessed via USB.

USB Cable

Hardware

Web Browser

PC USB Host

stack

USB Host

Controller

USB Device

Controller

Embedded USB

Device Stack

USB RNDIS

Function Driver

RNDIS over

USB

TCP/IP Stack

Software

PC Embedded Device

TCP/IP Stack

Web Server

PC USB Host

Controller Driver

USB Device

Controller Driver

5

Figure 4: USB Audio Device with MIDI

The USB Audio Class is defined such that if a USB device follows the specification, a PC
host will treat it as a sound card. As shown in Figure 4, this is accomplished by adding an
audio function driver to the embedded device. This function driver provides both an audio
interface and a MIDI (Musical Instrument Digital Interface) interface to a sound manager,
which in turn can connect to a microphone, speaker, or other audio gear, such as a musical
instrument. Thus audio and MIDI streams can be transferred over a USB link rather than
using audio or MIDI cables. This uses the USB isochronous mode of data transfer.

PC Application

Sound System

USB Audio

Class Driver

PC USB

Host Stack

PC

PC USB Host

Controller Driver

Embedded Device

Sound Manager

MIDI

Interface

Audio

Interface

USB Audio

Function Driver

Embedded USB

Device Stack

USB Device

Controller Driver

USB Cable

USB Host

Controller

Sound

Driver
Software

Hardware
Audio

Codec

USB Device

Controller

Microphone Speaker

6

Figure 5: USB Multi-Port Serial Device with UART and Other Connections

In Figure 1 we examined the case of one serial channel over a USB connection. However it is
actually possible to run multiple, independent serial channels over one USB connection. This
is practical because of the higher speed of USB, as noted in the Figure 1 discussion. Figure 5
shows the block diagram. The CDC ACM class driver in the PC may not be the native driver
that comes with the PC OS. A special driver may need to be installed. This driver presents
multiple virtual COM ports to the PC application and it multiplexes the corresponding serial
channels over the USB connection.

In the embedded device, the USB CDC function driver de-multiplexes the serial channels.
Note that, in this example, one channel goes to an application task, which might return certain
internal information, and the other two serial channels connect to actual UARTs. The
application in the PC can communicate with physical devices, (such as modem, bar code
reader, printer, etc.) connected to the UARTs as though they were connected directly to serial
ports on the PC (which we know does not actually have serial ports, anymore). The high
throughput of USB makes multiple channels feasible. For example, with a medium
performance processor and full speed USB, a total bandwidth of 200 KB/sec is achievable.
This would support 15 115.2 Kbaud channels, with capacity left over!

Software

PC CDC-ACM Driver

PC USB

Host Stack

Embedded USB

Device Stack

USB CDC

Function Driver

Serial

Port 3

PC Embedded Device

PC Application

UART 1

Driver

Serial

Port 2

Serial

Port 1

Application Task

UART 2

Driver

Channel 3

Channel 2

Channel 1

PC USB Host

Controller Driver

USB Device

Controller Driver

USB Host

Controller

USB Device

Controller

External

Device 1

External

Device 2

USB Cable

Hardware

7

Figure 6: USB Composite Devices

It is actually possible for one USB device to look like multiple USB devices to a USB host,
simultaneously. This is made possible by the USB Composite Device Framework, as shown
in Figure 6. The USB host (PC in this example) will recognize each USB device within the
embedded device and load its corresponding class driver. In Figure 6 the device looks like a
USB disk and a serial port. Note that both function drivers are present. This example is a
fairly common case that is supported by PC OSs. Many possible combinations are not
supported by PC OSs. This particular one would support an application in the PC transferring
files and another application allowing an operator to control or configure the embedded
device.

USB Cable

Hardware

File System

API

PC USB Host stack

USB Host Controller USB Device Controller

Embedded USB Device Stack

USB Composite Device FrameworkUSB Device Framework

USB Mass Storage

Function Driver

PC
Embedded Device

Mass Storage

Driver

File System

Embedded Application

USB Serial Port

Function Driver

Communication

CDC-ACM

Driver

RS232 API

PC App 1

Software
PC USB Host Controller Driver USB Device Controller Driver

PC App 2

8

Figure 7: USB Thumb Drive Support

Figure 7 shows how an embedded device can access a USB thumb drive (also called a “USB
memory stick”). A mass storage class driver fits between the USB host stack and the local file
system in the embedded device. It creates the usual read/write logical address API expected
of media drivers. Naturally the file system must be OS-compatible in order to exchange
thumb drives with a PC. Thumb drives are commonly used to transfer data from embedded
devices to PCs or to update firmware or configuration settings and tables in embedded
devices.

Hardware

USB Host Controller

Embedded USB

Host Stack

USB Mass Storage

Class Driver

File System

 (FAT or Other)

Software

Embedded Device

Embedded Application

USB Thumb Drive

USB Host Controller

Driver

9

Figure 8: USB to Ethernet

If an embedded device already has USB host capability, it is possible to connect it to a local
Ethernet network using a USB to Ethernet adapter. This can be done without adding hardware
to the embedded device. Figure 8 shows the software required to do the job. The USB to
Ethernet class driver interfaces the USB host stack to a TCP/IP stack in the embedded device.
This allows some units to connect to a LAN without the expense of adding Ethernet
connectivity to all units. It thus allows greater flexibility in meeting customer requirements
and saves redesign.

Hardware

USB Host Controller

Embedded USB

Host Stack

USB to Ethernet Class

Driver

TCP/IP Stack

Software

Embedded Device

Embedded Application

USB to Ethernet Adaptor LAN

USB Host Controller

Driver

10

Figure 9: USB to WiFi

Wireless communication is becoming more and more popular. Several vendors are providing
USB to WiFi (802.11) chipsets which enable systems having USB host ports to add wireless
connectivity. These chipsets are commercially available in what are called “WiFi dongles” or
“WiFi keys” and are generally inexpensive. Figure 9 shows the software needed in the
embedded device. The 802.11 Media Access Controller provides an Ethernet-like interface to
the local TCP/IP stack and controls the 802.11 controller in the WiFi chipset. The WiFi
chipset driver controls the USB interface in the chipset. For security, 802.11 MAC also
provides WEP (Wired Equivalency Privacy) or WPA (WiFi Protected Access).

Like the USB to Ethernet capability shown in Figure 8, this feature can be added to only
some embedded units, as required. It is very useful in the field when a wired connection is
not available or too expensive. Transfer rates of 200 KB/sec are typical for medium
performance processors.

USB Host Controller

Embedded USB

Host Stack

802.11 MAC

TCP/IP Stack

Software

Embedded Device

Embedded Application

USB WiFi

Dongle

WiFi Chipset Driver

WiFi Access

Point

Hardware

USB Host Controller

Driver

Laptop

Peer to Peer

11

Figure 10: USB Modem Access

If an embedded device already has USB host capability, adding a USB CDC-ACM class
driver can be used to add dialup modem capability to the system. This is shown in Figure 10.
No hardware change is necessary. USB modems are available that connect to phone lines in
the PSTN system. Some cell phones that have a USB modem interface can be used to connect
wirelessly. Hence, this can be a flexible option for connecting to an embedded device. It is
especially useful when the dialup communication is only needed occasionally. Also, one USB
modem can be shared between multiple devices to save the cost of adding modem hardware.
Dialup connections are very useful for long distance communication.

Hardware

USB Host Controller

Embedded USB

Host Stack

USB CDC-ACM

Class Driver

AT Command

Software

Embedded Device

Embedded Application

USB Modem PSTN

USB Host Controller

Driver

12

Figure 11: Connection to Multiple Sensors and Actuators

Figure 11 shows how an external hub can be used to connect an embedded control unit to
multiple sensors and actuators. In this diagram, it is assumed that the sensors are serial
devices. They are handled by a serial class driver. The actuators are assumed to be custom
devices requiring custom class drivers. A well-structured USB host stack permits easily
adding custom class drivers. Standard USB peripherals, such as printers and bar-code readers
could also be added. They would be supported by standard class drivers. For example a
keyboard or joystick would be supported by an HID class driver. A gaming machine is a good
example of a unit incorporating custom sensors and actuators and standard USB peripherals.

Hardware
USB Host Controller

Embedded USB Host Stack

Serial Class

Driver

Software

Embedded Device

Embedded Application

USB Host Controller Driver

Custom Class

Driver 3

Custom Class

Driver 4

External USB Hub

Serial

Sensor 1

Serial

Sensor 2

Actuator

3

Actuator

4

13

Conclusion
USB usage in embedded systems so far has been largely centered on dealing with the loss of
serial and parallel ports on PCs and laptops, the loss of parallel interface printers, and with
capitalizing on the low cost and convenience of USB thumb drives for transporting
information. However, as we hope this article has shown, USB offers many other capabilities
that are available to solve other problems in the embedded space. We expect to see these uses
grow in the future.

Micro Digital’s software supports all of the configurations described in this article.

Yingbo Hu is the lead developer of smxUSBD, smxUSBH, and smxWiFi, as well as smxFS
and smxFFS products of Micro Digital Inc. He specializes in writing device drivers for
embedded peripherals, such as USB and flash, and he has 11 years experience developing
real-time embedded software. He graduated with a Masters Degree from Beijing University
of Aeronautics and Astronautics.

Ralph Moore is the current President and founder of Micro Digital, Inc. He graduated from
Caltech with a Bachelors degree in physics long before the first “embedded system” or even
the first integrated circuit. He has watched our industry develop with amazement. Mr. Moore
is also the architect of the smx® real time multitasking kernel.

Copyright © 2008-2009 Micro Digital Inc. All rights reserved. www.smxrtos.com
smx is a registered trademark of Micro Digital Inc. smx product names are trademarks of Micro Digital Inc.
s:\marketing\articles\ways to use usb in embedded systems.doc 2/12/09

